手机浏览器扫描二维码访问
……
“……你看,这样就是一个椭圆曲线了。不过不是一般的圆锥曲线中的椭圆,而是域上亏格为1的光滑射影曲线。如果特征不等于2的话,那么仿射方程就是y^2=x^3+ax^2+bx+c。
那个BSD猜想的前置条件你肯定还记得吧?复数域上的椭圆曲线为亏格为1的黎曼面,整体域上的椭圆曲线是有限生成交换群。阿贝尔簇是椭圆曲线的高维推广。
所以这个时候我感觉就要把椭圆曲线化成魏尔斯特拉斯形式。这是我看了很多相关理论之后才找到的方法。这种变形就属于很机械的操作,前提条件是方程至少存在一个有理数点。
但显然这一步是成立的,之前我们已经证明了,所以我们就能得到这两个公式……”
乔喻一边说,一边在小桌板上用笔写着。
兰杰则认真听着,脖子脖子伸得老长,去看乔喻的整体解题过程,以及随手用坐标系画出的平面图。
“……很显然,我们现在得到了一条有着两个实部的经典椭圆曲线。右边的线,明显是连续延伸至正负无穷,左边的封闭椭圆曲线就是求解的关键了,给定这个方程任意解,都可以用等式还原我们要求的数值。”
“这一步最关键的地方就在于三元组(a:b:c)必须是投影曲线,这才可以随便乘什么常数,都能让方程成立。接下来就要用到双向有理等价了,我就直接在这个椭圆曲线上找一个最方便求解的有理数点,再带入原方程,就能求出解了。
其实到了这一步就简单了,椭圆曲线理论中,弦切技巧是生成新的有理数点的关键工具嘛。只要在椭圆曲线上找到两个已知的有理数点:P1跟P2,就能通过加法生成新的有理数点。
接下来就是直接在构造切线了,这个时候就自然形成了一个阿贝尔群,我们要引入O这个群中的零元,根据规则,任何一个点P跟O相加时结果依然是P。
……我们再通过作P点的切线,找到P跟曲线再次相交的点,然后再计算,如果得不到整数解,就继续用连接P和2P找到与曲线的第三个交点再与O点相连找到第四个交点,不行就重复这个步骤找第五个交点……
总之就是重复这个步骤,一直到找到对应的整数解为止。不过这一步靠手算肯定不行了,只能用电脑来算,找到那个值后,再用几何程序进行迭代。
最后计算9P才是整数,然后就是用得到的9P的值,做9次几何程序迭代,最后就能得出上述这个方程a,b,c的值了。整个解题思路就是这样。”
……
乔喻一口气讲了整整一个小时,只觉得口干舌燥,讲完之后,直接拿出插在前面座椅背上的矿泉水,狠狠地灌了几口。才开问道:“咋样,兰老师,你觉得我这种解法有普适性吗?”
兰杰回过神来,看了一眼乔喻,没有第一时间回答。
毕竟要判断出这种解法有没有普适性,首先他得完全理解这种解法。
让乔喻讲解,是因为他本以为乔喻在解这个方程时,不会用到太过复杂的数论方面内容。毕竟乔喻给他的印象一直是有天赋,但并没有针对数学系统的学习过。
而他不一样,大学时候也是系统学过抽象代数,数论入门这些课程的,不至于听不懂。
但显然他错了。
听乔喻讲解的时,他甚至回想起大学那段青葱岁月,被高级代数几何所支配的恐惧。
什么射影几何,模空间是真的让人很头大。他拼了命学最后也只是勉强过关,拿到了学分。当然班上也有很多厉害的同学,随随便便学学就能拿满分的。
这也是他研究生阶段选择组合数学,毕业之后回到星城当了个高中数学老师的原因。
真不是他不想做科研,继续读博士,然后争取能在高校当老师。
主要还是能力有限,真读不动了。
所以他是真没完全听懂乔喻求解这个方程的思路。
众所周知,如果要判断数学上某个求解方法对一类方程是否具备普适性,首先得完全理解整个求解思路。
这就很尴尬了。
本以为凭借他在大学积累的数学知识,听完乔喻现场讲解之后,肯定能给出一个答案的。
但现在他需要在丢人跟想办法掩饰之间做出一个选择。
大概沉吟了十秒钟后,兰杰选择了坦诚。
因为他是真不太会装。
“乔喻,说实话,我的水平不够,没法判断……所以这个问题你只能自己去尝试了。找几个同类的方程,用你这种方法去求解,如果最后都能得出正确答案的话,就可以动笔写论文了。
论文具体怎么解决问题,我没办法帮你。但我可以教你论文具体该怎么写。毕竟数学论文的撰写是有着特定的格式跟行文要求的,也有一些常见的通用标准。”
鹿蓁蓁柳璟琛 异能团宠:顾总的小娇妻又野又呆 浮沉一世是清欢 诸天:万化纵游 死镖 小玫瑰太甜太撩,清冷总裁把持不住啦 我从无尽战场回来了 军阀:有了系统崛起 执掌人生萧峥陈虹 长城紫光 美食:随机任务,食客们都馋疯了 NBA:从折磨乔丹开始加点升级 拜师风灵月影,入世天下无敌 末世:别人求生,我肆意妄为 苏铮霓凰 玄魔之仙 安能摧眉折腰事权臣 季天侯厉元朗 我的超能力和恋爱都有大问题 我把你当弟弟,你竟想娶我?
你知道冰和一根香蕉融合在一起会变成什么吗?我面前这个一口一个小冰球的蜥蜴会告诉你答案。但如果把电池和苹果以及苦瓜融合在一起,不仅变的难吃,还能让人拥有放电的时候身体会变绿的超能力!而当叶问拿着用牛粪,兔子毛,蝾螈,水熊虫,魔鬼辣椒和伟哥制成的动物系果实询问眼前这个被前女友戴绿帽,被现女友出轨他老爸,并且生下了他...
时锦从小长在白云观,十五岁时跟随萧家家主萧鹤川回京。二十二岁的萧鹤川看着面前娇娇小小的小孩儿你跟着行远叫我爸爸也可以。眼底毫无波澜的时锦你要是觉得你七岁的时候能生下我,我是不介意叫你爹的。萧鹤川二十五岁的萧鹤川面对出落的亭亭玉立的时锦锦锦时锦爹爹萧鹤川卒...
并指青云,气吞幽冥。大道交错,剑者独尊。这是一个人和一把剑的故事!红尘三千丈,琉璃染天香。群雄共逐鹿,剑尊掌苍黄。剑的真谛,万年之秘,以血海无涯重铸登天之路,以亿万枯骨再炼剑道经书。一切尽在太古剑尊。...
时忆,时氏集团大小姐,上辈子带着亲情滤镜被害离世。重生归来,她不在眼瞎,披上战甲,决定用自己的力量,守护时家,找到弟弟。骆祺,骆氏集团继承人,回国接手家族集团,杀伐果断的霸总,却在遇上时小姐之后屡屡碰壁,他发誓一定要把人拐回家。...
很显然,这是跳舞的又一套新书。也将会是跳舞在起点的第五套全本。(注意,这本书是都市YY,呵呵。几乎没有什么神话色彩,更不会再有什么教皇教会宗教圣骑士吸血鬼玉皇大帝之类的东西了)...
音乐影视绘画书法雕塑文学你都懂?略知一二。都会一点的意思?嗯,都会亿点的意思。怀揣系统,靠艺术征服世界,成为各界人士顶礼膜拜的无冕之王。...